RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2017 FIRST YEAR [BATCH 2017-20] MATH FOR INDUSTRIAL CHEMISTRY [General]

Date : 23/12/2017

Time

: 11 am – 2 pm

Paper : I

Full Marks: 75

[5×5]

5

5

3

5

5

[Use a separate Answer Book for each Group]

<u>Group – A</u> (Answer <u>any five</u> questions)

- 1. Show that the product of all the four values of $(1+i\sqrt{3})^{\frac{3}{4}}$ is 8.
- 2. If α, β, γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, then find the equation whose roots are $\beta^2 + \beta\gamma + \gamma^2, \gamma^2 + \gamma\alpha + \alpha^2, \alpha^2 + \alpha\beta + \beta^2$.
- 3. If the equation $ax^3 + 3bx^2 + 3cx + d = 0$ has two equal roots then show that $(bc ad)^2 = 4(b^2 ac)(c^2 bd)$ and each of the equal roots is $\frac{bc ad}{2(ac b^2)}$. 3+2
- 4. a) If $A = \begin{bmatrix} 3 & 1 & 0 \\ 2 & 1 & 4 \\ 1 & 2 & 0 \end{bmatrix}$ then find $A^T + \det A \cdot I$ where $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. 2
 - b) Solve using Cardan's method: $x^3 + 6x^2 + 11x + 6 = 0$.
- 5. Consider the following system of equations:

$$2x+3y+az = 1$$
$$x+y+5z = 6$$
$$y+2z = 3$$

Find the values of *a* for which the above system has a unique solution.

- 6. Prove that every square matrix can be expressed as a sum of a symmetric matrix and a skew-symmetric matrix uniquely.
- 7. a) Define an orthogonal matrix and give an example.
 b) If A is an orthogonal matrix then what are the possible values of its determinant? Justify.
 3

8. If
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, then verify that A satisfies its own characteristic equation. Using this result, find A^{-1} .

<u>Group – B</u> (Answer any five questions)

9. Find the right and the left hand limits of the function: $f(x) = \begin{cases} \frac{|x-4|}{x-4}, & x \neq 4\\ 0, & x = 4 \end{cases}$.

Find also the value of $\lim_{x\to 4} f(x)$, if exists.

10. Let
$$f(x) = |x-1| + |x-2|^2 + |x-3||x-4|$$
.
Find: a) $\underset{x \to 1}{Lt} f(x)$ b) $\underset{x \to 3\frac{1}{2}}{Lt} f(x)$ 2¹/₂X2

- 11. If [x] denotes the largest integer less than equal to x, then discuss the continuity at x = 3 for the function $f(x) = x [x], \forall x \ge 0$.
- 12. If a function *f* is continuous at an interior point *c* of an interval [*a*, *b*] and $f(c) \neq 0$, then prove that there exists *a* $\delta > 0$ such that f(x) has the same sign as that of f(c) for every $x \in (c \delta, c + \delta)$.
- 13. State and prove Euler's theorem on homogeneous function for three variables.
- 14. A function f is defined as

$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}.$$

Show that both the partial derivatives (f_x and f_y) exist at (0,0) but the function is not continuous there. 5

- 15. a) State Schwartz's theorem on commutative property of mixed derivatives.
 - b) For the function

$$f(x, y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

show that $f_{xy}(0, 0) = f_{yx}(0, 0)$.

16. Prove that, by the transformations, u = x - ct, v = x + ct, the partial differential equation $\frac{\partial^2 z}{\partial x^2} = c^2 \frac{\partial^2 z}{\partial x^2}$

reduces to
$$\frac{\partial^2 z}{\partial u \partial v} = 0$$
. 5

<u>Group – C</u> (Answer <u>any five</u> questions) [5×5]

17. Discuss the advantages and disadvantages of AM, GM and HM.

[5×5]

3+2

5

5

5

3

5

2

18. The frequency distribution of expenditure of 1000 families is given below:

Expenditure (Rs):	40–59	60–79	80–89	100–119	120–139
No. of families :	50		500		50

The mean and the median of the distribution are both 87.50. Determine the missing frequencies.

- 19. If a set of *n* values $x_1, x_2, \dots x_n$ with frequencies $f_1, f_2, \dots f_n$ respectively are given, show that their root-mean-square deviation is least when deviations are taken about their mean.
- 20. Discuss with example how skewness and Kurtosis determines the shape of a distribution.
- 21. A variable assumes the values 1, 2, *n* with corresponding frequencies 1, 2,*n*. Calculate the variance of the variable.
- 22. The first three moments of a distribution about the value 3 of a variable are 2, 10 and 30 respectively. Obtain the first three moments about zero. Find also the variance of the distribution.
- 23. Show that the value of correlation coefficient (r_{xy}) of two variables x and y always lies between -1 and 1.
- 24. Out of two lines of regression given by x+2y-5=0 and 2x+3y-8=0, which one is the regression line of x on y? Use the equations to find the means of x and y and the correlation coefficient. If the variance of x is 12, calculate the variance of y.

____ × ____

5

5

5

5

5

5